3,247 research outputs found

    Histogram comparison as a powerful tool for the search of new physics at LHC. Application to CMSSM

    Full text link
    We propose a rigorous and effective way to compare experimental and theoretical histograms, incorporating the different sources of statistical and systematic uncertainties. This is a useful tool to extract as much information as possible from the comparison between experimental data with theoretical simulations, optimizing the chances of identifying New Physics at the LHC. We illustrate this by showing how a search in the CMSSM parameter space, using Bayesian techniques, can effectively find the correct values of the CMSSM parameters by comparing histograms of events with multijets + missing transverse momentum displayed in the effective-mass variable. The procedure is in fact very efficient to identify the true supersymmetric model, in the case supersymmetry is really there and accessible to the LHC

    Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques

    Get PDF
    Site-specific management promotes the identification and management of areas within the field, which represent subfield regions with homogeneous characteristics (management zones). However, determination of subfield areas is difficult because of the complex combination of factors which could affect crop yield. One possibility to capture yield variability is the use of soil physical properties to define the management zones as they are related to plant available water. With the aim of characterizing the spatial variability of the main soil physical variables and using this information to determine potential management zones, soil samples were taken from 70 locations in a 33-ha field in Badajoz, southwestern Spain. Firstly, accurate spatial distribution maps of the soil attributes were generated by using regression kriging as the most suitable algorithm in which exhaustive secondary information on soil apparent electrical conductivity (ECa) was incorporated. ECa measurements were carried out with a Veris 3100 operating in both shallow (0–30 cm), ECs, and deep (0–90 cm), ECd,mode. Clay, coarse sand and fine sand were the soil physical properties which exhibited higher correlation with ECa (positively correlated with the finer texture component, clay, and negatively correlated with the coarser ones, coarse and fine sands), particularly with ECs. Thus, this was the secondary variable used to obtain the kriged maps. Later, principal component analysis and fuzzy cluster classification were performed to delineate management zones, resulting in two subfields to be managed separately. This number of subfields was determined using the fuzzy performance index and normalized classification entropy as the way to optimize the classification algorithm

    Study of hard double-parton scattering in four-jet events in pp collisions at √s = 7 TeV with the ATLAS experiment

    Full text link
    Journal of High Energy Physics 2016.11 (2016): 110 reproduced by permission of Scuola Internazionale Superiore di Studi Avanzati (SISSA)ArtĂ­culo escrito por muchos autores, sĂłlo se referencian el que aparece en primer lugar, el nombre del grupo de colaboraciĂłn y los autores que firman como pertenecientes a la UAMInclusive four-jet events produced in proton-proton collisions at a centre-ofmass energy of √ s = 7 TeV are analysed for the presence of hard double-parton scattering using data corresponding to an integrated luminosity of 37.3 pb−1 , collected with the ATLAS detector at the LHC. The contribution of hard double-parton scattering to the production of four-jet events is extracted using an artificial neural network, assuming that hard double-parton scattering can be approximated by an uncorrelated overlaying of dijet events. For events containing at least four jets with transverse momentum pT ≄ 20 GeV and pseudorapidity |η| ≀ 4.4, and at least one having pT ≄ 42.5 GeV, the contribution of hard double-parton scattering is estimated to be fDPS = 0.092 +0.005 −0.011 (stat.) +0.033 −0.037 (syst.). After combining this measurement with those of the inclusive dijet and four-jet cross-sections in the appropriate phase space regions, the effective cross-section, σeff, was determined to be σeff = 14.9 +1.2 −1.0 (stat.) +5.1 −3.8 (syst.) mb. This result is consistent within the quoted uncertainties with previous measurements of σeff, performed at centre-of-mass energies between 63 GeV and 8 TeV using various final states, and it corresponds to 21+7 −6% of the total inelastic cross-section measured at √ s = 7 TeV. The distributions of the observables sensitive to the contribution of hard double-parton scattering, corrected for detector effects, are also providedWe acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska- Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, RĂ©gion Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdo

    Search for dark matter in association with a Higgs boson decaying to b-quarks in pp collisions at √s=13 TeV with the ATLAS detector

    Full text link
    A search for dark matter pair production in association with a Higgs boson decaying to a pair of bottom quarks is presented, using 3.2 fb−1of pp collisions at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the LHC. The decay of the Higgs boson is reconstructed as a high-momentum bbÂŻ system with either a pair of small-radius jets, or a single large-radius jet with substructure. The observed data are found to be consistent with the expected backgrounds. Results are interpreted using a simplified model with a Zâ€Čgauge boson mediating the interaction between dark matter and the Standard Model as well as a two-Higgs-doublet model containing an additional Zâ€Čboson which decays to a Standard Model Higgs boson and a new pseudoscalar Higgs boson, the latter decaying into a pair of dark matter particlesWe acknowledge the support of ANPCyT, Argentina; YerPhI, Ar-menia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbai-jan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Re-public; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZĆ , Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie SkƂodowska-Curie Actions, opean Union; Investissements d’Avenir Labex and Idex, ANR, RĂ©gion Au-vergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valen-ciana, Spain; the Royal Society and Leverhulme Trust, United Kingdo

    Performance of the upgraded PreProcessor of the ATLAS Level-1 Calorimeter Trigger

    Full text link
    ArtĂ­culo escrito por un elevado nĂșmero de autores, solo se referencian el que aparece en primer lugar, los autores pertenecientes a la UAM y el nombre del grupo de colaboraciĂłn, si lo hubiereThe PreProcessor of the ATLAS Level-1 Calorimeter Trigger prepares the analogue trigger signals sent from the ATLAS calorimeters by digitising, synchronising, and calibrating them to reconstruct transverse energy deposits, which are then used in further processing to identify event features. During the first long shutdown of the LHC from 2013 to 2014, the central components of the PreProcessor, the Multichip Modules, were replaced by upgraded versions that feature modern ADC and FPGA technology to ensure optimal performance in the high pile-up environment of LHC Run 2. This paper describes the features of the new Multichip Modules along with the improvements to the signal processing achieve

    Establishment of a human cell-based in vitro battery to assess developmental neurotoxicity hazard of chemicals

    Get PDF
    Developmental neurotoxicity (DNT) is a major safety concern for all chemicals of the human exposome. However, DNT data from animal studies are available for only a small percentage of manufactured compounds. Test methods with a higher throughput than current regulatory guideline methods, and with improved human relevance are urgently needed. We therefore explored the feasibility of DNT hazard assessment based on new approach methods (NAMs). An in vitro battery (IVB) was assembled from ten individual NAMs that had been developed during the past years to probe effects of chemicals on various fundamental neurodevelopmental processes. All assays used human neural cells at different developmental stages. This allowed us to assess disturbances of: (i) proliferation of neural progenitor cells (NPC); (ii) migration of neural crest cells, radial glia cells, neurons and oligodendrocytes; (iii) differentiation of NPC into neurons and oligodendrocytes; and (iv) neurite outgrowth of peripheral and central neurons. In parallel, cytotoxicity measures were obtained. The feasibility of concentration-dependent screening and of a reliable biostatistical processing of the complex multi-dimensional data was explored with a set of 120 test compounds, containing subsets of pre-defined positive and negative DNT compounds. The battery provided alerts (hit or borderline) for 24 of 28 known toxicants (82% sensitivity), and for none of the 17 negative controls. Based on the results from this screen project, strategies were developed on how IVB data may be used in the context of risk assessment scenarios employing integrated approaches for testing and assessment (IATA).European Food Safety Authority (EFSA-Q-2018-00308), the Danish Environmental Protection Agency (EPA), Denmark, under the grant number MST-667-00205, the State Ministry of Baden-Wuerttemberg, Germany, for Economic Affairs, Labour and Tourism (NAM-Accept), the project CERST (Center for Alternatives to Animal Testing) of the Ministry for culture and science of the State of North-Rhine Westphalia, Germany (file number 233–1.08.03.03- 121972/131–1.08.03.03–121972), the European Chemical Industry Council Long-Range Research Initiative (Cefic LRI) under the project name AIMT11 and the BMBF (NeuroTool). It has also received funding from the European Union's Horizon 2020 research and innovation program under grant agreements No. 964537 (RISK-HUNT3R), No. 964518 (ToxFree), No. 101057014 (PARC) and No. 825759 (ENDpoiNTs)

    Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA

    Get PDF
    Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure
    • 

    corecore